IMPACT OF JAKARTA MASS RAPID TRANSIT ON LOCAL AIR QUALITY

Dwi Setiyo Puryanti, Muhammad Halley Yudhistira
| Abstract views: 0 | views: 0

Abstract

Moda Raya Terpadu Jakarta, or MRT Jakarta, is the first urban rail-based public transportation in Indonesia with several underground lines. Since March 24, 2019, MRT Jakarta Phase 1 (North-South corridor) has officially operated and has a line length of about 16 kilometers consisting of seven elevated stations and six underground stations. The motivation for this research stems from the fact that in 2019 Jakarta occupied ranked first as the capital city with the highest level of air pollution in Southeast Asia, where the land transportation sector is one of the primary sources. Government investment is significant enough to develop public transport, which is expected to overcome this market failure. However, research evidence to prove the benefits of MRT operation on local air quality is still limited, especially for urban areas in developing countries such as Jakarta. This study uses the Difference-in-Difference method and the Air Pollution Standard Index (ISPU) as air quality proxies by controlling several factors, such as weather conditions, determination of national holidays, weekends, and large-scale social restriction (PSBB) policies during the Covid-19 pandemic that hit all parts of the world, the gradual determination of MRT fares, and the period of construction of the MRT line. This study reveals two main findings. First, the operation of MRT Jakarta Phase 1 in corridor 1 resulted in a 27.4 percent reduction in air pollution levels in the area closest to the MRT line. Second, the estimation results show that the impact on reducing air pollution is negligible on weekends.

Keywords: air quality, MRT Jakarta, ISPU

Abstrak

Moda Raya Terpadu Jakarta, atau MRT Jakarta merupakan transportasi publik berbasis kereta perkotaan pertama di Indonesia dengan beberapa jalur bawah tanah. Sejak 24 Maret 2019, MRT Jakarta Fase 1 (koridor Utara-Selatan) resmi beroperasi dan memiliki panjang jalur sekitar 16 kilometer yang terdiri dari tujuh stasiun layang dan enam stasiun bawah tanah. Motivasi penelitian ini bermula dari kenyataan bahwa pada tahun 2019 Jakarta menduduki peringkat pertama sebagai ibu kota dengan tingkat polusi udara tertinggi di Asia Tenggara, di mana sektor transportasi darat menjadi salah satu sumber utama. Investasi pemerintah cukup besar untuk mengembangkan angkutan umum yang diharapkan dapat mengatasi kegagalan pasar ini. Namun, hasil penelitian untuk membuktikan manfaat pengoperasian MRT terhadap kualitas udara lokal masih terbatas, terutama untuk wilayah perkotaan di negara berkembang seperti Jakarta. Penelitian ini menggunakan metode Difference-in-Difference dan Indeks Standar Polusi Udara (ISPU) sebagai proksi kualitas udara dengan mengontrol beberapa faktor-faktor, seperti kondisi cuaca, penetapan hari libur nasional, akhir pekan, kebijakan pembatasan sosial berskala besar (PSBB) di masa pandemi Covid-19 yang melanda seluruh belahan dunia, penetapan tarif MRT secara bertahap, dan dengan memperhitungkan periode pembangunan jalur MRT. Penelitian ini mengungkapkan dua temuan utama. Pertama, beroperasinya MRT Jakarta Fase 1 di koridor 1 berdampak pada penurunan tingkat polusi udara sebesar 27,4 persen di area yang terdekat dengan jalur MRT. Kedua, hasil estimasi menunjukkan bahwa dampaknya terhadap penurunan polusi udara terjadi lebih kecil pada akhir pekan.

Kata kunci: kualitas udara, MRT Jakarta, ISPU

Keywords

air quality; MRT Jakarta; ISPU; kualitas udara

Full Text:

PDF

References

Journal:

Adler, M.W. & van Ommeren, J.N. (2016). Does public transit reduce car travel externalities? Quasi natural experiments’ evidence from transit strikes. J. Urban Econ. 92, 106–119. https://doi.org/10.1016/j.jue.2016.01.001.

Anderson, M.L. (2014). Subways, strikes, and slowdowns: The impacts of public transit on traffic congestion. Am. Econ. Rev. 104, 2763–2796. https://doi.org/10.1257/aer.104.9.2763.

Bel, G. & Holst, M. (2018). Evaluation of the impact of Bus Rapid Transit on air pollution in Mexico City. Transp. Policy 63, 209–220. https://doi.org/10.1016/j.tranpol.2018.01.001.

Chenyihsu, Y. & Whalley, A. (2012). Green infrastructure: The effects of urban rail transit on air quality. Am. Econ. J. Econ. Policy 4, 58–97. https://doi.org/10.1257/pol.4.1.58.

Fageda, X. (2021). Do light rail systems reduce traffic externalities? Empirical evidence from mid-size European cities. Transp. Res. Part D Transp. Environ. 92, 102731. https://doi.org/10.1016/j.trd.2021.102731.

Font, A., Baker, T., Mudway, I.S., Purdie, E., Dunster, C., & Fuller, G.W. (2014). Degradation in urban air quality from construction activity and increased traffic arising from a road widening scheme. Sci. Total Environ. 497–498, 123–132. https://doi.org/10.1016/j.scitotenv.2014.07.060.

Guo, S. & Chen, L. (2019). Can urban rail transit systems alleviate air pollution? Empirical evidence from Beijing. Growth Change 50, 130–144. https://doi.org/10.1111/grow.12266.

Karimah, I.D. & Yudhistira, M.H. (2020). Does small scale port investment affect local economic activity? Evidence from small-port development in Indonesia. Econ. Transp. 23. https://doi.org/10.1016/j.ecotra.2020.100180.

Kellogg, R. & Auffhammer, M. (2011). Clearing the air? The effects of gasoline content regulation on air quality. Am. Econ. Rev. 101, 2687–2722.

Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality globally. Nature 525, 367–371. https://doi.org/10.1038/nature15371.

Lestari, P., Damayanti, S., & Arrohman, M.K. (2020). Emission Inventory of Pollutants (C.O., SO2, PM2.5, and NOX) in Jakarta, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 489. https://doi.org/10.1088/1755-1315/489/1/012014.

Lichtman-Sadot, S. (2019). Can public transportation reduce accidents? Evidence from the introduction of late-night buses in Israeli cities. Reg. Sci. Urban Econ. 74, 99–117. https://doi.org/10.1016/j.regsciurbeco.2018.11.009.

Nguyen-Phuoc, D.Q., Currie, G., De Gruyter, C., & Young, W. (2018). Exploring the impact of public transport strikes on travel behaviour and traffic congestion. Int. J. Sustain. Transp. 12, 613–623. https://doi.org/10.1080/15568318.2017.1419322.

Nugroho, S.B., Fujiwara, A., & Zhang, J. (2011). An empirical analysis of the impact of a bus rapid transit system on the concentration of secondary pollutants in the roadside areas of the TransJakarta corridors. Stoch. Environ. Res. Risk Assess. 25, 655–669. https://doi.org/10.1007/s00477-011-0472-x.

Park, E.S. & Sener, I.N. (2019). Traffic-related air emissions in Houston: Effects of light-rail transit. Sci. Total Environ. 651, 154–161. https://doi.org/10.1016/j.scitotenv.2018.09.169.

Salehi, F., Karbassi, A.R., & Khashaypoor, M. (2016). Environmental impact assessment of bus rapid transit (BRT) in Tehran Metropolitan City. Int. J. Hum. Cap. Urban Manag. 1, 47–56. https://doi.org/10.7508/ijhcum.2016.01.006.

Sohoni, A. V., Thomas, M., & Rao, K.V.K. (2017). Mode shift behaviour of commuters due to the introduction of new rail transit mode. Transp. Res. Procedia 25, 2603–2618. https://doi.org/10.1016/j.trpro.2017.05.311.

Viard, V.B. & Fu, S. (2015). The effect of Beijing’s driving restrictions on pollution and economic activity. J. Public Econ. 125, 98–115. https://doi.org/10.1016/j.jpubeco.2015.02.003.

Wang, J., Xu, X., Wang, S., He, S., Li, X., & He, P., 2021. Heterogeneous effects of COVID-19 lockdown measures on air quality in Northern China. Appl. Energy, 282, 116179. https://doi.org/10.1016/j.apenergy.2020.116179.

Wöhrnschimmel, H., Zuk, M., Martínez-Villa, G., Cerón, J., Cárdenas, B., Rojas-Bracho, L. et al. (2008). The impact of a Bus Rapid Transit system on commuters’ exposure to Benzene, CO, PM2.5 and PM10 in Mexico City. Atmos. Environ. 42, 8194–8203. https://doi.org/10.1016/j.atmosenv.2008.07.062.

Yang, Z. & Tang, M. (2018). Does the increase in public transit fares deteriorate air quality in Beijing? Transp. Res. Part D Transp. Environ. 63, 49–57. https://doi.org/10.1016/j.trd.2018.04.020.

Working Paper:

Beaudoin, J. & Lawell, C.-Y.C.L. (2016). Is Public Transit’s “Green” Reputation Deserved? Evaluating the Effect of Transit Supply on Air Quality.

Rivers, N., Saberian, S., & Schaufele, B. (2017). Public Transit and Air Pollution.

Yudhistira, M.H., Kusumaatmadja, R., & Hidayat, M.F. (2019). Does Traffic Management Matter? Evaluating Congestion Effect of Odd-Even Policy in Jakarta.

Legislation:

Minister of Environment and Forestry Regulation No.P.14/MENLHK/SETJEN/KUM.1/7/2020.

Digital Sources:

IQAir. (2019). World Air Quality Report. 2019 World Air Qual. Rep. 1–35. Accessed in February 9, 2021, from www.iqair.com.

MRT. (2020). Menuju Ratangga, Kereta Kota Kita. Accessed in March 3, 2021, from https://menujuratangga.jakartamrt.co.id/assets/pdf/E Book%20Menuju%20Ratangga%20Kereta%20Kota%20Kita.pdf.

WHO. (2019). Health Consequences of Air Pollution on Populations [WWW Document]. Accessed in April 23, 2021, from https://www.who.int/news/item/15-11-2019-what-are-health consequences-of-air-pollution-on-populations.

WHO. (2017). WHO Global Urban Ambient Air Pollution Database (update 2016) [WWW Document]. Accessed in April 23, 2021, from https://www.who.int/phe/health_topics/outdoorair/databases/cities/en/.

Government Report:

Environment Agency of DKI Jakarta and Vital Strategies. (2019). Toward Cleaner Air Jakarta. Environ. Agency DKI Jakarta, Vital Strategies. 1–56.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.